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uridine B-thiohydroxamic ester to obtain thé-gyridin-2-yl)
thioether. Its oxidationn-CPBA) and fluorination of the de-
rived sulfonyl-stabilized carbanion (Selectfluor) were successful.
However, attempted desulfonylation by known procedures
failed. We now have discovered that pyridin-2-yl- and espe-
cially pyrimidin-2-ylsulfonyl groups undergo cleavage from the
a-carbon atoms of carboxylic and phosphonic esters. This new
methodology was employed for the first reported synthesis of
a 6-deoxy-6-fluorohomonucleoside phosphonate from uridine.

Phosphonate derivatives of nucleosides have been studied Treatment of 23-O-isopropylideneuridine 'scarboxylic

extensively as analogues of biologically important nucleotides.
Blackburn proposed that-fluoro anda,a-difluoro substitution

on methylenephosphonates should provide superior phosphatghjone gave theN-hydroxypyridine-2-thioester.

ester surrogates (closer isosteric and isopolar paratiélghe

acid® (1, Scheme 1) with isobutyl chloroformakémethyl-
morpholine/THF and the sodium salt Nthydroxypyridine-2-
Photolysis
(tungsten light) with diethyl vinylphosphonate gave the reported

bridging oxygen in di- and triphosphates has been replaced with addition producg?°2>(~60%) plus byproduct¥ed Attempted

mono- and difluoromethylene entitiés} and the OH function

on phosphates has been replaced with a fluoromethyl droup.
Condensations of O&ctivated nucleosidésand activated 's
monophosphatéswith (fluoromethylene)- and (difluorometh-
ylene)bis(phosphonic acids) have given di- and triphosphate
analogues wittoe and 8 pyrophosphate oxygen replaced with
CHF and CFE units. Phosphonate homologues of nucleotides
(O5 replaced with ChH’ CHF8 or CR? ) are of enhanced

interest since they are not substrates for the usual phosphatases.

Established syntheses of homophosphonates with @iits
employed Wittig or Arbuzov chemistry. Recent repoPt¥’
of their Ck, analogues have utilized coupling of nucleic acid
bases with a previously synthesizegh-difluorohomoribose
phosphonate derivati¥e or a carbocyclic analogu€. The
9-(5,5-difluoro-5-phosphonopentyl)guanine congener of acy-
clovir phosphate was found to exert potent inhibition of purine
nucleoside phosphorylagg.

o-Fluoro- and,a-difluoromethylenephosphonates have been
prepared by Arbuzov reactions with fluorohalomethalies,
fluorination of phosphonate-stabilized anidAsalkylation of
[(diethoxyphosphoryl)difluoromethyl]lithiurt® and palladium-
catalyzed addition of diethyl (difluoroiodomethyl)phosphonate
to alkenes$ Fluorinations of sulfonyl-stabilized phosphonate
carbanions with perchloryl fluoridé and the new Selectfluor
reagent® have been described. We employed Barton's chain-
extension method with diethyl vinylphosphonate and a protected
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C6 fluorination of thioether2 with (diethylamino)sulfur tri-
fluoride (DASTY'2 or oxidation of 2 and treatment of the
sulfoxides with DAST/ShGHPfailed. Oxidation of2 with >2
equiv of m-CPBA gave the pyridin-2-yl sulfon8a, which was
benzoylated at N3 to givéh.?2 Treatment of8b with potassium
hydride generated a stabilized '@arbanion. Several “positive
fluorine” sources failed to give defined products, but Selectfluor
[1-(chloromethyl)-4-fluoro-1,4-diazabicyclo[2.2.2]octane bis-
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(22) NMR (CDCE, unless specified). (a) Data as reportedgot®@ and
10c¢230 (b) 3b: 'H NMR 6 1.25 (t,J = 7.0 Hz, 6), 1.31 (s, 3), 1.52 (s, 3),
2.40-2.71 (m, 2), 4.10 (q) = 7.0 Hz, 4), 4.38-4.71 (m, 3), 4.965.12
(m, 1), 5.58 (d,J = 1.1 Hz, 0.5, HI), 5.67 (d,J = 1.5 Hz, 0.5, HI), 5.83
and 5.85 (d and dJ = 8.1 Hz, 0.5 and 0.5), 7.37 and 7.39 (d and d, 0.5
and 0.5), 7.458.14 (m, 8), 8.678.94 (m, I); HRMS (Cl)m/z664.1724
(100, MH" [C29H3sN3011PS] = 664.1730). (cpb: 6 1.24-1.35 (m, 9),
1.51 and 152 (2s, 3), 2.783.06 (m, 2), 4.16:4.32 (m, 4), 4.684.76 (m,
2), 4.96 (ddJy-3 = 6.3 Hz,J»—1 = 2.0 Hz, 0.5, H2, 4.99 (dd,J>.3 =
5.9 Hz,Jy = 2.0 Hz, 0.5, H)), 5.48 and 5.49 (2d, 1, H}1 5.68 and 5.71
(2dd, Js-¢ = 8.2 Hz,Js.nw = 2.3 Hz, 1, H5), 7.19 and 7.22 (2d, 1, H6),
7.60, 7.97, 8.14, 8.79 (4m, 4), 9.06 (br s, I¥ NMR § —168.2 (ddd,
Jrp=82.2 Hz,Jr55° = 30.0, 17.1 Hz, 0.5);-168.6 (ddd J-—p = 82.2
Hz, Jr-55 = 29.1, 17.1 Hz), plus minor'@) signals; HRMS (Cl)m/z
578.1367 (100, MH [CyH3FN3O10PS] = 578.1374). (d)5b (faster
isomer): *H NMR (D20) 6 1.23 (t,J = 6.9Hz, 6), 2.22-2.36 (m, 2), 4.03
(t, J=5.9 Hz, 1), 4.084.12 (m, 1), 4.15 (q, 4), 4.27 (8, = 3.9 Hz, 1),
5.14 (dm,Jg—F = 45.2 Hz, 1), 5.67 (dJy—> = 3.3 Hz, 1), 5.76 (dJ5-¢ =
8.2 Hz, 1) 7.52 (d, 1)¥*F NMR (D:0) 6 —203.2 (ddddJ-—p = 78.2 Hz,
Jr-¢ = 46.1 Hz,Jr-5 5* = 28.3, 10.5 Hz); HRMS (Cljn/z397.1170 (100,
MH ™ [C14H23FN,OgP] = 397.1176). (ep (from fastersb): mp 200-210
°C dec; UV (HO) max 262 nm¢ 8200), min 231 nm¢ 2100);*H NMR
(D20) 8 2.11-2.22 (m, 2), 4.04 (t) = 6.0 Hz, 1), 4.15 (gJ) = 6.2 Hz, 1),
4.25 (t,J = 5.0 Hz, 1), 4.83 (dnds—F ~ 46 Hz, 1), 5.75 (dJr-» = 4.5
Hz, 1), 5.88 (d,Js-6 = 8.0 Hz, I), 7.59 (d, 1)}°F NMR (NaH/D,;O)
—200.5 (ddddJe—p = 61.9 Hz,Jp-¢ = 48.2 HZ,Jr—5 5* = 27.3, 9.1 Hz);
HRMS (FAB) m/z385.0194 (76, MH [C10H13FN2OsPNa] = 385.0189),
363.0370 (35, MFi [C10H14FN,0gPNa]= 363.0370). (fBa(oil): H NMR
similar to 8b. Anal. Calcd for GsH1dNO4S: C, 54.72; H, 6.71; N, 4.91.
Found: C, 54.63; H, 6.52; N 5.09. (§p: mp 50-51°C;*H NMR 6 0.90
(t,J=6.6 Hz, 3), 1.1 (tJ=7.1 Hz, 3), 1.28-1.51 (m, 4), 2.152.28 (m,
2),4.10 (q, 2), 4.61 (dd] = 6.2, 8.7 Hz, 1), 7.60 (t) = 4.9 Hz, 1), 8.97
(d, 2). Anal. Calcd for @H1gN204S: C, 50.33; H, 6.34; N, 9.78. Found:
C, 50.33; H, 6.15; N, 9.60. (9a (oil): *H NMR 6 0.90 (t,J = 6.8 Hz, 3),
1.16-1.52 (m, 7), 2.36-2.73 (m, 2), 4.31 (q) = 7.2 Hz, 2), 7.60 (ddd)
=14,47,7.6 Hz, 1), 7.98 (d§, = 1.7, 7.6 Hz, 1), 8.09 (d) = 1.1 Hz,
7.8 Hz, 1), 8.73 (ddd) = 1.0, 1.7, 4.8 Hz, 1)1 NMR ¢ —159.4 (dd,J
= 10.3, 38.5 Hz). Anal. Calcd for gH1sFNOsS: C, 51.47; H, 5.98; N,
4.62. Found: C, 51.39; H, 6.12; N, 4.51. @p (oil): H and°F NMR
similar to9a. Anal. Calcd for GoH17FN2O4S: C, 47.36; H, 5.63; N, 9.20.
Found: C, 47.57; H,5.72; N, 9.19. (j) 2H]-10c 'H NMR same ad0¢3b
except simplification a® 1.87 and small signals~(10%) atd 4.86; 1%
NMR 6 —193.2 (tt,pro =79 Hz,J-q = 24.9 HZ).
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a(a) (i) Isobutyl chloroformat&l-methylmorpholine/THF; (ii) sodium
salt of N-hydroxypyridine-2-thione; (iii) diethyl vinylphosphonalte/
(b) mCPBA. (c) BzCI/EIN{-Pr)/pyridine. (d) KH/THF/Selectfluor/
DMF. (e) NHy/MeOH. (f) BusSnH/AIBN/benzeneX. (g) TFA/H;O. (h)
0] l\ﬂegsiBr/DMF; (ii) DEAE Sephadex; (iii) Dowex 56 8(H') then
(Na").

(tetrafluoroboratef gave the desired-fluoro sulfone phos-
phonateda, which was debenzoylated and purified to gill#?
(47% from3b).

Standard procedur&sfor removal of sulfonyl groupsd.g,
treatment of4b with Al(Hg) or Na(Hg); or base-promoted
eliminatior?#>-9] failed to give 5a or its 5,6-unsaturated
analogue. Although tributylstannane is used routinely for hydro-
genolysis of carborhalogen, carbonsulfur, carbor-selenium,
and carbor-nitro bonds® it is ineffective for cleavage of typical
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at reflux for 48 h caused no observed change in the starting
material. However, parallel treatment of ethyl 2-(pyridin-2-yl-
sulfonyl)hexanoate8g) for 36 h gave ethyl hexanoatd(a
60%) plus unchangefla and minor decomposition products.
Analogous treatment of ethyl 2-(pyrimidin-2-ylsulfonyl)hex-
anoate 8b) gave complete conversion tbOa within 1 h.
Substitution of BySnD for BSnH gave ethyl 2-deuteriohex-
anoate 10b).

Carbanion-mediated fluorinations proceeded smoothly in the
model series. The 2-(pyridin-2-ylsulfony8aand 2-(pyrimidin-
2-ylsulfonyl) 8b esters were treated with potassium hydride,
and the enolates were quenched with Selectfluor to give ethyl

saturated sulfones. In contrast, stannodesulfonylations of vinyl 2-fluoro-2-(pyridin-2-ylsulfonyl)hexanozat&(9a) and ethyl 2-flu-

sulfoneg® (including nucleoside exampk#89 are known, and
recent desulfonylations of 2-(alkyl- and -aryl)sulfonylpyrréles

might involve successive stannodesulfonylation/protiodestan-

nylation at the “vinylic’ C2-C3 bond of the pyrrole ring.
Desulfonylations of allylic sulfoné8with tributylstannane are
known, and sulfonyl radicals are versatile intermediates in
organic synthesi&?> Therefore, we began an investigation of
radical-mediated cleavage atdeficient aryl sulfones.

Ethyl hexanoate was chosen as a model for diethyl alkyl-

oro-2-(pyrimidin-2-ylsulfonyl)hexanoat&(9b) in high yields.
Tributylstannane-mediated desulfonylatiorBaf(28 h) anddb

(1 h) gave ethyl 2-fluorohexanod# (10c 60% and 95%,
respectively). Treatment &b with BusSnD gave 24H]-10c??
These reactiof® provide convenient access to biologically
important a-fluorocarbonyl compounds and their isotope-
labeled derivativess-Deficient heterocyclic sulfones could be
especially advantageous in reactions that involve generation of
sulfonyl carbanions since acidifying effects of these pyridin-

phosphonates in which C2 would simulate the phosphonate and pyrimidin-2-ylsulfonyl groups oa-carbon are greater than

o-carbon. Treatment of ethyl 2-bromohexanoate Scheme

2) with pyridine-2-thione, pyrimidine-2-thione, and benzenethiol
in solutions of NaH/THF/DMF gave the respective ethyl
2-(arylthio)hexanoates in excellent yields. Oxidation gave the
corresponding sulfone8a,b?? and 8c.2%@ Treatment of ethyl
2-(phenylsulfonyl)hexanoat&¢) with BusSnH/AIBN/benzene
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that of the phenylsulfonyl group.

This methodology for sulfone removal was successful for the
synthesis of our target nucleoside phosphonate. Treatment of
4b with BusSnH/AIBN/benzeneX/48 h caused cleavage of the
sulfonyl linkage ba, 61%), and removal of the isopropylidene
group and RP-HPLC (MD/CH;CN; 19:1) gave pooled fractions
of 5b?2 enriched in each of the two'-Bluoro diastereomers
(~12:1 vs ~1:6). Independent treatment of the enriched
diastereomer mixtures with trimethylsilyl bromide and purifica-
tion (DEAE Sephadex A-25; 0.0+ 0.20 M TEAB/H0)
followed by conversion to the sodium salts [Dowex:5@(H")
and then (Na&); H,O] gave 6-deoxy-6-fluoro-6-(phosphonato)-
homouridine disodium s&# (6).

In summary, we have developed convenient and efficient
methodologies for synthesis of carboxylate and phosphonate
heterocyclica-sulfones, their-fluorination with Selectfluor,
and their desulfonylation with tributylstannane. This provides
a facile new route for the preparation @f%3H] and a-fluoro-
a-[#3H] carbonyl compounds and phosphonates. Barton thio-
hydroxamic ester chemistry was used to prepare a protected
6'-(pyridin-2-ylthio)homouridine phosphonate that was oxidized
(m-CPBA) to the sulfone, fluorinated (Selectfluor), desulfony-
lated (BuSnH/AIBN), and deprotected to give the first reported
6'-deoxy-6-fluorohomonucleoside’hosphonate.
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